تشخیص نوع احساس از روی گفتار با استفاده از ویژگی های زمان – فرکانسی
thesis
- دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد شاهرود - دانشکده برق و الکترونیک
- author زینب اسماعیلیان
- adviser حسین مروی امیدرضا معروضی
- Number of pages: First 15 pages
- publication year 1392
abstract
تشخیص احساس از روی سیگنال گفتار یکی از موضوعات جدید و چالش برانگیز در پردازش گفتار می باشد که نقش مهمی در ارتباط انسان و کامپیوتر دارد. استفاده از یک پایگاه داده جامع در سیستم تشخیص احساس از اهمیت زیادی برخوردار است. تاکنون پایگاه های داده مختلفی به زبان های آلمانی، انگلیسی، دانمارکی و سایر زبان ها ارائه شده اند اما پایگاه داده فارسی جامعی تاکنون مشاهده نشده است از این رو در این تحقیق پایگاه داده فارسی احساسی درام برای تشخیص احساس از روی گفتار ارائه شده است. این پایگاه داده شامل 748 جمله با 8 احساس عصبانیت، خستگی، نفرت، ترس، طبیعی، ناراحتی، تعجب وخوشحالی می باشد. جملات توسط 33 گوینده (18 مرد و 15 زن) بیان شده اند. به منظور ارزیابی و مقایسه ی پایگاه داده پیشنهادی و پایگاه داده معروف برلین، ویژگی های متداول عروضی و طیفی از جملات این دو پایگاه داده استخراج گردیدند. نوآوری های دیگر در این تحقیق، ارائه دو ویژگی زمان- فرکانسی جدید مبتنی بر وریوگرام و مل کپستروم دو بعدی به منظور تشخیص احساس از روی گفتار می باشد. درآزمایش های انجام شده، از الگوریتم انتخاب ویژگی مبتنی بر معیار fdr و الگوریتم lda استفاده نموده ایم. به منظور کلاسه بندی احساس های مختلف ازالگوریتم های lda، svm خطی و svm با کرنل rbf استفاده نموده ایم. بیشترین نرخ تشخیص از ترکیب ویژگی های وریوگرام (پیشنهادی) با ویژگی های عروضی و طیفی حاصل شده است که در پایگاه داده درام برای گویندگان مرد 34/57% و برای گویندگان زن 18/63% و درپایگاه داده برلین برای گویندگان مرد 43/90% و برای گویندگان زن 82/86% محاسبه شد.
similar resources
بهبود نرخ تشخیص احساس از روی گفتار با استفاده از تفکیک جنسیتی
تشخیص احساس از روی سیگنال گفتار یکی از شاخههای نسبتاً جدید در پردازش گفتار میباشد که میتواند در تعامل انسان و روبات نقش مهمی ایفا کند. در این مقاله ضمن استفاده از دو نوع ویژگی طیفی جدید به منظور افزایش نرخ بازشناسی به بررسی تاثیر جنسیت گویندگان در تشخیص احساس پرداخته شده است. ویژگیهای یاد شده با استفاده از روشهای پردازش تصویر، از تصویر طیفنگاره سیگنال گفتار استخراج میشوند . در این تحقیق ب...
full textتشخیص احساس ازسیگنال گفتار با استفاده از موجک بیونیک
تشخیص احساس برای رایانه امری چالشبرانگیز است. دلیل اصلی این موضوع نیز عدم توانایی رایانه در درک احساس کاربر است. هدف از این مقاله، طراحی یک سیستم تشخیص احساس از گفتار و ارائة روشی نوین جهت بهبود این سیستم است. تاکنون در این زمینه از ویژگیهای متفاوتی استفاده شده است، اما هیچ یک عملاً به ارتباط بین دامنة صوت و حالتهای احساسی نپرداختهاند. چون موجک بیونیک به این ارتباط بیشتر پرداخته است، بهنظر ...
full textتشخیص احساس ازسیگنال گفتار با استفاده از موجک بیونیک
تشخیص احساس برای رایانه امری چالش برانگیز است. دلیل اصلی این موضوع نیز عدم توانایی رایانه در درک احساس کاربر است. هدف از این مقاله، طراحی یک سیستم تشخیص احساس از گفتار و ارائه روشی نوین جهت بهبود این سیستم است. تاکنون در این زمینه از ویژگی های متفاوتی استفاده شده است، اما هیچ یک عملاً به ارتباط بین دامنه صوت و حالت های احساسی نپرداخته اند. چون موجک بیونیک به این ارتباط بیشتر پرداخته است، به نظر ...
full textتشخیص لهجه های زبان فارسی از روی سیگنال گفتار با استفاده از روش های استخراج ویژگی کارآمد و ترکیب طبقه بندها
Speech recognition has achieved great improvements recently. However, robustness is still one of the big problems, e.g. performance of recognition fluctuates sharply depending on the speaker, especially when the speaker has strong accent and difference Accents dramatically decrease the accuracy of an ASR system. In this paper we apply three new methods of feature extraction including Spectral C...
full textحذف خودکار آرتیفکت چشمی از سیگنال های مغزی با استفاده از ویژگی های آماری و زمانی- فرکانسی مولفه های مستقل
مهمترین مشکل در بررسی و پردازش ثبت های الکتروآنسفالوگرام (EEG) حضور انواع سیگنال های ناخواسته (آرتیفکت ها) است که حذف آنها با روش تحلیل مولفه های مستقل از بهترین گزینه های ممکن است. هدف مساله تحلیل مولفه های مستقل جداسازی کور ترکیبی خطی از منابع مستقل است. با اعمال این روش روی سیگنال های مغزی آغشته به آرتیفکت، آرتیفکت ها به صورت مولفه های مستقلی استخراج می شوند. تشخیص خودکار مولفه های مستقل مرب...
full textتشخیص احساس از روی گفتار به کمک بازسازی فضای فازی
در این پایان نامه سعی شده است به مقوله تشخیص احساس از روی گفتار (ser) بپردازیم. برای این منظور از روش بازسازی فضای فازی استفاده می نماییم. به این معنا که با اعمال تأخیر زمانی روی نمونه ها ی جملات پایگاه داده، نمونه ها در یک فضای سه بعدی نگاشت می شوند. سپس با اعمال توابع نمایی، ریشه سوم، توان سه و تابع لگاریتمی، نقاط در فضای فاز پراکنده می شوند. در این روش، نرخ تشخیص احساس در سیگنال های گفتار بر...
My Resources
document type: thesis
دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد شاهرود - دانشکده برق و الکترونیک
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023